Black hole simulations explore limits of spacetime

Black holes are voracious absences at the center of galaxies that shape the growth and death of the stars around them through their powerful gravitational pull and explosive ejections of energy.

Roger Blandford, director of the Kavli Institute for Particle Astrophysics and Cosmology and a member of the US National Academy of Sciences said that over its lifetime, a black hole can release more energy than all the stars in a galaxy combined. "Black holes have a major impact on the formation of galaxies and the environmental growth and evolution of those galaxies," he said. Gravitational forces grow so strong close to a black hole that even light cannot escape from within, hence the difficulty in observing them directly. Scientists infer facts about black holes by their influence on the astronomical objects around them: the orbit of stars and clumps of detectable energy.

With this information in hand, scientists create computer models to understand the data and to make predictions about the physics of distant regions of space. However, models are only as good as their assumptions. "All tests of general relativity in the weak gravity field limit, like in our solar system, fall directly along the lines of what Einstein predicted," Jonathan McKinney, an assistant professor of physics at the University of Maryland at College Park said. "But there is another regime which has yet to be tested, and which is the hardest to test that represents the strong gravitational field limit. And according to Einstein, gravity is strongest near black holes," he said.

This makes black holes the ultimate experimental testing grounds for Einstein's general theory of relativity. While black holes cannot be observed, they are typically accompanied by other objects with distinctive features that can be seen, including accretion disks, which are circling disks of superhot matter on our side of the black hole's "event horizon"; and relativistic jets, high-powered streams of ionized gases that shoot hundreds of thousands of light-years across the sky. McKinney, Alexander Tchekhovskoy, and Blandford predicted that the formation of accretion disks and relativistic jets that warp and bend more than previously thought, shaped both by the extreme gravity of the black hole and by powerful magnetic forces generated by its spin. Their highly detailed models of the black hole environment contribute new knowledge to the field.

... contd.

Please read our terms of use before posting comments
TERMS OF USE: The views, opinions and comments posted are your, and are not endorsed by this website. You shall be solely responsible for the comment posted here. The website reserves the right to delete, reject, or otherwise remove any views, opinions and comments posted or part thereof. You shall ensure that the comment is not inflammatory, abusive, derogatory, defamatory &/or obscene, or contain pornographic matter and/or does not constitute hate mail, or violate privacy of any person (s) or breach confidentiality or otherwise is illegal, immoral or contrary to public policy. Nor should it contain anything infringing copyright &/or intellectual property rights of any person(s).
comments powered by Disqus