More than one brain behind Einstein's equation 'E=mc2'?

Einstein

A little known Austrian physicist may have contributed to Einstein's famous equation E=mc2, US scientists have claimed.

In a study to be published in the European Physical Journal H, Stephen Boughn from Haverford College in Pensylvannia and Tony Rothman from Princeton University in New Jersey argue how Austrian physicist Friedrich Hasenohrl's work, for which he now receives little credit, may have contributed to the equation E=mc2.

The physicists outline the role played by Hasenohrl in establishing the proportionality between the energy (E) of a quantity of matter with its mass (m) in a cavity filled with radiation.

According to science philosopher Thomas Kuhn, the nature of scientific progress occurs through paradigm shifts, which depend on the cultural and historical circumstances of groups of scientists.

Concurring with this idea, the authors believe the notion that mass and energy should be related did not originate solely with Hasenohrl. Nor did it suddenly emerge in 1905, when Einstein published his paper, as popular belief would have it, researchers said in a statement.

Given the lack of recognition for Hasenohrl's contribution, the authors examined the Austrian physicist's original work on blackbody radiation in a cavity with perfectly reflective walls.

The study seeked to identify the blackbody's mass changes when the cavity is moving relative to the observer.

They then explored the reason why the Austrian physicist arrived at an energy/mass correlation with the wrong factor, namely at the equation: E = (3/8) mc2.

Hasenohrl's error, they believe, stems from failing to account for the mass lost by the blackbody while radiating.

Before Hasenohrl focused on cavity radiation, other physicists, including French mathematician Henri Poincare and German physicist Max Abraham, showed the existence of an inertial mass associated with electromagnetic energy.

In 1905, Einstein gave the correct relationship between inertial mass and electromagnetic energy, E=mc2. Nevertheless, it was not until 1911 that German physicist Max von Laue generalised it to include all forms of energy.

Please read our terms of use before posting comments
TERMS OF USE: The views expressed in comments published on indianexpress.com are those of the comment writer's alone. They do not represent the views or opinions of The Indian Express Group or its staff. Comments are automatically posted live; however, indianexpress.com reserves the right to take it down at any time. We also reserve the right not to publish comments that are abusive, obscene, inflammatory, derogatory or defamatory.