Super-Earths may have life-protecting magnetic shields: study

Super earth

Super-Earths could have oceans of liquid metal and life- protecting magnetic shields, scientists say.

Under the heat and pressure that exist inside super-Earths, magnesium oxide and other minerals commonly found in the rocky mantles of the terrestrial planets, transform into liquid metals, laboratory tests have shown, Discovery News reported. Super-Earths are planets beyond the solar system that are bigger than Earth but smaller than gas giants like Neptune.

The research has implications for understanding conditions on super-Earths, including whether they might be favourable for supporting life.

Scientists zapped a piece of magnesium oxide with high-powered lasers to simulate the heat and pressure that would exist on planets roughly three to 10 times as massive as Earth.

They discovered that the clear ceramic mineral first morphed into a solid with a new crystal structure, then completely transformed into a liquid metal.

In that state, the liquid mineral may be able to sustain a physics phenomenon called a "dynamo" action, which is responsible for generating magnetic fields.

"It is often thought that a planetary magnetic field protects life on a planet's surface from harmful space radiation, like cosmic rays. What we find is that magnetic fields may exist on more super-Earth planets than expected, resulting from the transformation of the planet's rocks to metals in the deep interior. This could create new environments for life in the universe," geophysicist Stewart McWilliams, with the Carnegie Institution and Howard University in Washington DC, wrote in an email to Discovery News.

"The field certainly affects the way life evolves. I think it is an open question as to whether its absence inhibits the development of life," added planetary scientist David Stevenson, with the California Institute of Technology in Pasadena.

"It is not easy for a terrestrial planet to generate magnetic field because the high thermal conductivity of the core material also allows heat to leak out by conduction, thus reducing the likelihood of convection. It is actually best to have a poor electrical conductor," he continued.

... contd.

Please read our terms of use before posting comments
TERMS OF USE: The views, opinions and comments posted are your, and are not endorsed by this website. You shall be solely responsible for the comment posted here. The website reserves the right to delete, reject, or otherwise remove any views, opinions and comments posted or part thereof. You shall ensure that the comment is not inflammatory, abusive, derogatory, defamatory &/or obscene, or contain pornographic matter and/or does not constitute hate mail, or violate privacy of any person (s) or breach confidentiality or otherwise is illegal, immoral or contrary to public policy. Nor should it contain anything infringing copyright &/or intellectual property rights of any person(s).
comments powered by Disqus